ANALYTIC GEOMETRY AND CONIC SECTIONS Precalculus Chapter 7

- This Slideshow was developed to accompany the textbook
 - Precalculus
 - By Richard Wright
 - https://www.andrews.edu/~rwright/Precalculus-RLW/Text/TOC.html
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

In this section, you will:

- Find the inclination of a line.
- Calculate the angle between two lines.
- Find the distance between a point and a line.

- Conic sections
 - Intersections of a plane with a double cone

The point and lines are called **degenerate conic sections** because they do not produce curves.

- Lines
 - Ax + By + C = 0 or y = mx + b
- Inclination
 - Describes steepness of line
 - Angle it makes with positive *x*-axis
 - $\tan \theta = \frac{y}{x} = slope$
 - $\tan \theta = m$
 - ullet Where $0^{\circ} < \theta < 180^{\circ}$
 - ullet If heta < 0, add 180°

m = slope

• Find the inclination of 4x - 2y + 5 = 0.

First, find the slope by rewriting the equation in slope-intercept form.

$$y = 2x + \frac{5}{2}$$

The slope is 2.

Find the inclination.

$$\tan \theta = 2$$
$$\theta = \tan^{-1} 2$$
$$\theta \approx 63.4^{\circ}$$

- Angle between Two Lines
 - $\beta + \theta_2 = 180^\circ$ (linear pair)
 - $^{\bullet}\beta = 180^{\circ} \theta_2$
 - $\theta_1 + \alpha + \beta = 180^{\circ}$ (triangle sum)
 - $^{\bullet}\alpha = 180^{\circ} \theta_1 \beta$
 - $^{\bullet} \alpha = 180^{\circ} \theta_1 (180^{\circ} \theta_2)$
 - $^{\bullet}\alpha=\theta_2-\theta_1$
 - $\theta = \alpha$ (vertical angles)
 - $\bullet \theta = \theta_2 \theta_1$

- Written as slopes
 - $\bullet \tan \theta = \tan(\theta_2 \theta_1)$
 - $\tan \theta = \frac{\tan \theta_2 \tan \theta_1}{1 + \tan \theta_2 \tan \theta_1}$
 - Because the tangents are slopes
 - $\bullet \tan \theta = \left| \frac{m_2 m_1}{1 + m_1 m_2} \right|$
 - Where $0^{\circ} < \theta < 90^{\circ}$

• Find the angle between 2x + y = 4 and x - y = 2.

Find the slopes

$$2x + y = 4$$

$$y = -2x + 4 \quad m = -2$$

$$x - y = 2$$

$$y = x - 2$$

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$$

$$\tan \theta = \left| \frac{1 - (-2)}{1 + (1)(-2)} \right|$$

$$\tan \theta = 3$$

$$\theta = \tan^{-1} 3$$

$$\theta \approx 71.6^{\circ}$$

- Distance from a Point to a Line
- This is derived in your book and online.
- Point (x_1, y_1) and Line Ax + By + C = 0
- $^{\bullet} d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$

• Find the distance from (0, 2) to 4x + 3y = 0.

The point is
$$(x_1, y_1)$$
 so

The line is
$$Ax + By + C = 0$$

$$x_{1} = 0$$

$$y_{1} = 2$$

$$A = 4, B = 3, C = 0$$

$$d = \frac{|Ax_{1} + By_{1} + C|}{\sqrt{A^{2} + B^{2}}}$$

$$d = \frac{|4(0) + 3(2) + 0|}{\sqrt{4^{2} + 3^{2}}}$$

$$d = \frac{6}{5}$$

In this section, you will:

- Find the focus, vertex, and directrix of a parabola.
 - Write the standard equation of a parabola.
 - Graph a parabola.

- Parabolas
 - set of all points in a plane that are equidistant from a fixed line, called the **directrix** and a fixed point, called the **focus**.
 - Vertex
 - max or min point
 - midpoint between the focus and directrix.
 - Axis of symmetry
 - line perpendicular to the directrix
 - goes through the focus and vertex.
 - Parabola bends around the focus and away from the directrix.

Vertical Parabola

p =directed (+, -) distance from vertex to focus

Vertex (h, k)

Focus (h, p + k)

Directrix y = k - p

 $(x-h)^2 = 4p(y-k)$

Horizontal Parabola

p =directed (+, -) distance from vertex to focus

Vertex (h, k)

Focus (p + h, k)

Directrix x = h - p

 $(y-k)^2 = 4p(x-h)$

• Find the vertex, focus, and directrix of the parabola given by $y = \frac{1}{2}x^2$.

Rearrange the equation to standard form

$$x^2 = 2y$$

Since it is x^2 , it is a vertical parabola

$$(x-h)^2 = 4p(y-k)$$

$$h = 0, k = 0$$

$$4p = 2 \text{ so } p = \frac{1}{2}$$

Vertex (h, k)

Focus (h, p + k)

$$\left(0, \frac{1}{2} + 0\right) = \left(0, \frac{1}{2}\right)$$

Directrix

$$y = -\frac{1}{2}$$

• Find the standard form of the equations of a parabola with vertex at (0, 0) and focus (-2, 0).

The line through the points is horizontal

Vertex (h, k) = (0, 0)

Dist from vertex to focus = 2 left

$$p = -2$$

$$(y-k)^{2} = 4p(x-h)$$

$$(y-0)^{2} = 4(-2)(x-0)$$

$$y^{2} = -8x$$

• Find the vertex, focus, and directrix of the parabola given by

$$x^2 - 2x - 16y - 31 = 0.$$

 x^2 so vertical parabola

Arrange the terms to fit standard form

$$x^2 - 2x = 16y + 31$$

Complete the square (add $\left(\frac{1}{2}b\right)^2$)

$$x^{2} - 2x + \left(\frac{1}{2}(-2)\right)^{2} = 16y + 31 + \left(\frac{1}{2}(-2)\right)^{2}$$
$$x^{2} - 2x + 1 = 16y + 32$$

Factor

$$(x-1)^2 = 16(y+2)$$

Compare to $(x - h)^2 = 4p(y - k)$

$$h = 1, k = -2$$

$$4p = 16$$
, so $p = 4$

Vertex (h, k)

$$(1, -2)$$

Focus (h, p + k)

Directrix y = k - p

$$y = -2 - 4 = -6$$

• Graph $(x-1)^2 = 16(y+2)$

Solve for *y* and make a table of values

$$y = \frac{(x-1)^2}{16} - 2$$

• Write the standard form of the equation of the parabola with focus (1, 2) and directrix x = 3.

Directrix is vertical, so axis is <u>horizontal</u>

Graph the focus and directrix

Vertex is midway between (2, 2)

$$h = 2, k = 2$$

Distance from vertex to focus is 1 left

$$p = -1$$

$$(y - k)^{2} = 4p(x - h)$$

$$(y - 2)^{2} = 4(-1)(x - 2)$$

$$(y - 2)^{2} = -4(x - 2)$$

In this section, you will:

- Find the foci, vertices, and covertices of an ellipse.
 - Write the standard equation of an ellipse.
 - Graph an ellipse.

• Ellipse

- Set of all points in a plane where the sum of the distances to two fixed points, foci, is constant.
- Major axis
 - Longest segment across the ellipse
 - Connects the two **vertices**.
- Minor axis
 - Shortest segment across the ellipse
 - Connects the two **covertices**.

• Circle

 Special form of an ellipse where both foci are at the center.

Horizontal Ellipse

Center (h, k)

Horizontal Major Axis length = 2aVertical Minor Axis length = 2b

$$c^2 = a^2 - b^2$$

Vertices $(h \pm a, k)$ Covertices $(h, k \pm b)$

Foci $(h \pm c, k)$

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Vertical Ellipse

a = distance from center to
vertex

b =distance from center to covertex

c = distance from center to focus

Center (h, k)

Vertical Major Axis length = 2*a* Horizontal Minor Axis length = 2*b*

$$c^2 = a^2 - b^2$$

Vertices $(h, k \pm a)$ Covertices $(h \pm b, k)$

Foci $(h, k \pm c)$

$$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} =$$

• Find the center, vertices, and foci of the ellipse $9x^2 + 4y^2 = 36$.

Put in standard form (\div 36) to get 1

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Bigger denominator is a^2

$$\frac{y^2}{9} + \frac{x^2}{4} = 1$$

y is over big denominator so vertical

$$\frac{(y-k)^2}{a^2} + \frac{(b-h)^2}{b^2} = 1$$

$$a^2 = 9$$
 so $a = 3$
 $b^2 = 4$ so $b = 2$

$$b^2 = 4$$
 so $b = 2$

$$c^{2} = a^{2} - b^{2}$$

$$c^{2} = 9 - 4$$

$$c = \sqrt{5}$$

$$h = 0, k = 0$$

Center (h, k)

(0, 0)

Vertices $(h, k \pm a)$

 $(0, \pm 3)$

Covertices $(h \pm b, k)$

 $(\pm 2, 0)$

Foci $(h, k \pm c)$ $(0, \pm \sqrt{5})$

• Find the standard form of the ellipse centered at (1, 2) with major axis length 10 and foci (-2, 2) and (4, 2).

Graph the center and foci

Major axis is horizontal

Center (h, k) = (1, 2)

Major axis length 10 = 2a, so a = 5

c is distance from center to foci, c = 3

$$c^2 = a^2 - b^2$$
, so $b = 4$

$$\frac{(x-1)^2}{25} + \frac{(y-2)^2}{16} = 1$$

• Graph
$$\frac{(x-1)^2}{25} + \frac{(y-2)^2}{16} = 1$$

$$a^2 = 25$$
, so $a = 5$

$$b^2 = 16$$
, so $b = 4$

Vertices $(h \pm a, k)$

(-4,2) and (6,2)

Covertices $(h, k \pm b)$

(1,-2) and (1,6)

Graph by plotting the vertices and covertices and drawing your best ellipse

• Sketch the graph of $25x^2 + 9y^2 - 200x + 36y + 211 = 0$

Continues on next slide

Complete the square by moving the constant to the other side and factor x's and y's $25(x^2-8x)+9(y^2+4y)=-211$

$$25(x^2 - 8x) + 9(y^2 + 4y) = -211$$

Add $\left(\frac{1}{2}b\right)^2$ for both x and y

$$25\left(x^2 - 8x + \left(\frac{1}{2}(-8)\right)^2\right) + 9\left(y^2 + 4y + \left(\frac{1}{2}(4)\right)^2\right)$$

$$= -211 + 25\left(\frac{1}{2}(-8)\right)^2 + 9\left(\frac{1}{2}(4)\right)^2$$

$$25(x^2 - 8x + 16) + 9(y^2 + 4y + 4) = -211 + 400 + 36$$

Factor

$$25(x-4)^2 + 9(y+2)^2 = 225$$

$$h = 4, k = -2$$

$$a^2=25$$
, so $a=5$
 $b^2=9$, so $b=3$
Graph by plotting center (4, -2).
Vertices are up and down $a=5$
(4, 3) and (4, -7)
Covertices are left/right $b=3$
(1, -2) and (7, -2)

- Eccentricity
 - Measure of how circular an ellipse is
 - $e = \frac{c}{a}$ where 0 < e < 1
 - If $e \approx 0$, then ellipse is almost a circle
 - If $e \approx 1$, then ellipse is almost a line

In this section, you will:

- Find the foci, vertices, covertices, and asymptotes of a hyperbola.
 - Write the standard equation of a hyperbola.
 - Graph a hyperbola.
 - Classify conics based on the general equation.

• Hyperbolas

- Set of all points in a plane where the difference of the distances from two set points, foci, is constant.
- $d_1 d_2 = \text{constant}$.

Horizontal Hyperbola

Center (h, k)

Horizontal Transverse Axis length = 2aVertical Conjugate Axis length = 2b

$$c^2 = a^2 + b^2$$

Vertices $(h \pm a, k)$, Covertices $(h, k \pm b)$ Foci $(h \pm c, k)$

$$\frac{(x-h)^2}{a_b^2} - \frac{(y-k)^2}{b^2} = 1$$

Asymptotes y =

Vertical Hyperbola

Center (h, k)

Eccentricity

Where e > 1Big e = linear branches

> Vertical Transvers Axis length = 2aHorizontal Conjugate Axis length = 2b $c^2 = a^2 + b^2$

$$c^2 = a^2 + b^2$$

Vertices $(h, k \pm a)$, Covertices $(h \pm b, k)$ Foci $(h, k \pm c)$

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{h^2} = 1$$

Asymptotes y = k

• Find the center, vertices, asymptotes, and foci of the hyperbola $4y^2 - 9x^2 = 36$.

Write in standard form by dividing by 36. $\frac{y^2}{9} - \frac{x^2}{4} = 1$

$$\frac{y^2}{9} - \frac{x^2}{4} = 1$$

Because y comes first, vertical hyperbola

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

$$h = 0, k = 0, a = 3, b = 2$$

$$c^2 = a^2 + b^2$$

$$c = \sqrt{13}$$

Center (h, k)

Vertices $(h, k \pm a)$

$$(0,-3)$$
 and $(0,3)$

Asymptotes $y = k \pm \frac{a}{h}(x - h)$

$$y = \pm \frac{3}{2}x$$

Foci $(h, k \pm c)$

$$\left(0,-\sqrt{13}\right)$$
 and $\left(0,\sqrt{13}\right)$

• Find the standard form of the hyperbola centered at (1, 2) with transverse axis length 10 and foci (-5, 2) and (7, 2).

Graph the center and foci

Transverse axis is <u>horizontal</u>

Center (h, k) = (1, 2)

Transverse axis length 10 = 2a, so a = 5

c is distance from center to foci, c = 6

$$c^2 = a^2 + b^2$$
, so $b = \sqrt{11}$

$$\frac{(x-1)^2}{25} - \frac{(y-2)^2}{11} = 1$$

7-04 HYPERBOLAS

• Graph
$$\frac{(x-1)^2}{25} - \frac{(y-2)^2}{11} = 1$$

$$a^2 = 25$$
, so $a = 5$

$$b^2 = 11$$
, so $b = \sqrt{11}$

Vertices $(h \pm a, k)$

$$(-4,2)$$
 and $(6,2)$

Covertices $(h, k \pm b)$

$$(1,-1.32)$$
 and $(1,5.32)$

Graph by plotting the vertices and covertices

Drawing a rectangle

Draw diagonal lines through corners of rectangle

Sketch the hyperbola starting near asymptote, curve through vertex, end near other asymptote

7-04 HYPERBOLAS

• Sketch the graph of $4x^2 - 9y^2 - 24x - 72y - 72 = 0$

Continues on next slide

Complete the square by moving the constant to the other side and factor x's and y's

$$4(x^2 - 6x) - 9(y^2 + 8y) = 72$$

Add $\left(\frac{1}{2}b\right)^2$ for both x and y

$$4\left(x^{2} - 6x + \left(\frac{1}{2}(-6)\right)^{2}\right) - 9\left(y^{2} + 8y + \left(\frac{1}{2}(8)\right)^{2}\right) = 72 + 4\left(\frac{1}{2}(-6)\right)^{2} - 9\left(\frac{1}{2}(8)\right)^{2}$$
$$4(x^{2} - 6x + 9) - 9(y^{2} + 8y + 16) = 72 + 36 - 144$$

Factor

$$4(x-3)^2 - 9(y+4)^2 = -36$$

$$h = 3, k = -4$$

$$a^2 = 4$$
, so $a = 2$
 $b^2 = 9$, so $b = 3$

Graph by plotting center (3, -4).

Vertices are up and down a = 2

$$(3,-2)$$
 and $(3,-6)$

Covertices are left/right b = 3

$$(0, -4)$$
 and $(6, -4)$

7-04 HYPERBOLAS

General form of conics

$$\bullet Ax^2 + Cy^2 + Dx + Ey + F = 0$$

- Circle if A = C
- Parabola if AC = 0 (so A = 0 or C = 0)
- Ellipse if AC > 0
- Hyperbola if AC < 0

Classify the conics

$$4x^2 + 5y^2 - 9x + 8y = 0$$

$$2x^2 - 5x + 7y - 8 = 0$$

- $7x^2 + 7y^2 9x + 8y 16 = 0$
- $4x^2 5y^2 x + 8y + 1 = 0$

$$AC = 4(5) = 20$$
 Ellipse

$$AC = 2(0) = 0$$
 Parabola

$$A = C = 7$$
 Circle

$$AC = 4(-5) = -20$$
 Hyperbola

In this section, you will:

- Write rotated conics equations in standard form.
 - Graph rotated conics.
 - Classify conics by their equation.

- Nonrotated conics form $Ax^2 + Cy^2 + Dx + Ey + F = 0$.
 - Either horizontal or vertical.
- Rotated conics form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$.
 - Not horizontal or vertical
- *Bxy* term prevents completing the square to write the conics in standard form.
- To graph or write them in standard form, the *Bxy* term needs to be eliminated.
- Then write the equation in the form $A'(x')^2 + C'(y')^2 + D'x' + E'y' + F' = 0$ by rotating the coordinate axes counterclockwise through the angle θ , where
- $\bullet \cot 2\theta = \frac{A-C}{B}$
- Where $0 < 2\theta < 180^{\circ}$ and $0 < \theta < 90^{\circ}$

- Classify Rotated Conics
- If the conic is in the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, then
 - If $B^2 4AC < 0 \rightarrow$ ellipse or circle
 - If $B^2 4AC = 0 \rightarrow \text{parabola}$
 - If $B^2 4AC > 0 \rightarrow \text{hyperbola}$

- Write Rotated Conics in Standard Form
- Given a conic written as $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$
- 1. Find the angle of rotation using

$$\cot 2\theta = \frac{A - C}{B}$$

where $0 < \theta < \frac{\pi}{2}$

- **2.** Find $\sin \theta$ and $\cos \theta$.
- If θ is a special angle, evaluate $\sin \theta$ and $\cos \theta$ directly.
- If θ is not a special angle,
 - **a.** Find cot 2θ .
 - **b.** Reciprocal to find tan 2θ.
 - **C.** Use $1 + \tan^2 u = \sec^2 u$ to find $\sec 2\theta$. (If $\tan 2\theta < 0$, then $\sec 2\theta < 0$.)
 - **d.** Reciprocal to find $\cos 2\theta$.
 - **e.** Use the half-angle formulas to find sin θ and $\cos \theta$.

$$\sin \theta = \sqrt{\frac{1 - \cos 2\theta}{2}}$$
 and $\cos \theta = \sqrt{\frac{1 + \cos 2\theta}{2}}$

3. Find the substitutions for x and y using

$$x = x' \cos \theta - y' \sin \theta$$

$$y = x' \sin \theta + y' \cos \theta$$

- **4.** Make the substitutions and arrange the terms into standard form.
- Graph a Rotated Conic
- 1. Draw the rotated axes.
- 2. Using the rotated axes, sketch the conic.

• Write $xy = \frac{1}{2}$ in standard form

Classify the conic

$$B^2 - 4AC$$
$$1^2 - 4(0)(0) = 1 > 0$$

Hyperbola Find the angle of rotation

$$\cot 2\theta = \frac{A - C}{B} = \frac{0}{1} = 0$$
$$2\theta = \frac{\pi}{2}$$
$$\theta = \frac{\pi}{4}$$

Find the substitutions for x and y.

$$x = x' \cos \frac{\pi}{4} - y' \sin \frac{\pi}{4}$$
$$y = x' \sin \frac{\pi}{4} + y' \cos \frac{\pi}{4}$$

$$x = \frac{\sqrt{2}}{2}x' - \frac{\sqrt{2}}{2}y'$$
$$y = \frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'$$

Substitute these into the original equation and simplify.

original equation and simplify.
$$xy = \frac{1}{2}$$

$$\left(\frac{\sqrt{2}}{2}x' - \frac{\sqrt{2}}{2}y'\right)\left(\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y'\right) = \frac{1}{2}$$

$$\frac{1}{2}(x')^2 - \frac{1}{2}(x'y') + \frac{1}{2}(x'y') - \frac{1}{2}(y')^2 = \frac{1}{2}$$

$$(x')^2 - (y')^2 = 1$$

• Sketch the graph of

$$x^2 + \sqrt{3}xy + 2y^2 - 2 = 0.$$

Classify the conic

$$B^2 - 4AC$$

$$(\sqrt{3})^2 - 4(1)(2) = -5 < 0$$

Ellipse

Find the angle of the rotation.

$$\cot 2\theta = \frac{A-C}{B} = \frac{1-2}{\sqrt{3}} = -\frac{1}{\sqrt{3}}$$
$$2\theta = \frac{2\pi}{3}$$

$$\theta = \frac{\pi}{3}$$

Find the substitutions for x and y.

$$x = x' \cos \frac{\pi}{3} - y' \sin \frac{\pi}{3}$$
$$y = x' \sin \frac{\pi}{3} + y' \cos \frac{\pi}{3}$$

$$x = \frac{1}{2}x' - \frac{\sqrt{3}}{2}y'$$
$$y = \frac{\sqrt{3}}{2}x' + \frac{1}{2}y'$$

Substitute these into the original equation and simplify.

$$\left(\frac{1}{2}x' - \frac{\sqrt{3}}{2}y'\right)^2 + \sqrt{3}\left(\frac{1}{2}x' - \frac{\sqrt{3}}{2}y'\right)\left(\frac{\sqrt{3}}{2}x' + \frac{1}{2}y'\right) + 2\left(\frac{\sqrt{3}}{2}x' + \frac{1}{2}y'\right)^2 - 2 = 0$$

$$\frac{1}{4}(x')^2 - \frac{\sqrt{3}}{2}x'y' + \frac{3}{4}(y')^2 + \sqrt{3}\left(\frac{\sqrt{3}}{4}(x')^2 + \frac{1}{4}x'y' - \frac{3}{4}x'y' - \frac{\sqrt{3}}{4}(y')^2\right)$$

$$+ 2\left(\frac{3}{4}(x')^2 + \frac{\sqrt{3}}{2}x'y' + \frac{1}{4}(y')^2\right) - 2 = 0$$

$$\frac{1}{4}(x')^2 - \frac{\sqrt{3}}{2}x'y' + \frac{3}{4}(y')^2 + \frac{3}{4}(x')^2 + \frac{\sqrt{3}}{4}x'y' - \frac{3\sqrt{3}}{4}x'y' - \frac{3}{4}(y')^2 + \frac{3}{2}(x')^2 + \sqrt{3}x'y' + \frac{1}{2}(y')^2 - 2 = 0$$

$$\frac{5}{2}(x')^2 + \frac{1}{2}(y')^2 = 2$$

Divide by to write to make the equation equal 1.

$$\frac{(x')^2}{4/5} + \frac{(y')^2}{4} = 1$$

$$\frac{(x')^2}{4/5} + \frac{(y')^2}{4} = 1$$

Vertical ellipse with a=2 and $b=\frac{2\sqrt{5}}{5}$ and center (0, 0).

Draw the rotated axis, then move a=2 along the rotated y-axis and $b=\frac{2\sqrt{5}}{5}$ along the rotated x-axis.

Connect the points with a nice ellipse.

Sketch the graph of

$$3x^2 + 2\sqrt{3}xy + y^2 + 2x - 2\sqrt{3}y = 0.$$

Classify the conic

$$B^2 - 4AC$$

$$(2\sqrt{3})^2 - 4(3)(1) = 0$$

Parabola

Find the angle of rotation.

$$\cot 2\theta = \frac{A-C}{B} = \frac{3-1}{2\sqrt{3}} = \frac{\sqrt{3}}{3}$$
$$2\theta = \frac{\pi}{3}$$

$$\theta = \frac{\pi}{6}$$

Find the substitutions for x and y.

$$x = x' \cos \frac{\pi}{6} - y' \sin \frac{\pi}{6}$$
$$y = x' \sin \frac{\pi}{6} + y' \cos \frac{\pi}{6}$$

$$x = \frac{\sqrt{3}}{2}x' - \frac{1}{2}y'$$
$$y = \frac{1}{2}x' + \frac{\sqrt{3}}{2}y'$$

Substitute these into the original equation and simplify.

$$3\left(\frac{\sqrt{3}}{2}x' - \frac{1}{2}y'\right)^{2} + 2\sqrt{3}\left(\left(\frac{\sqrt{3}}{2}x' - \frac{1}{2}y'\right)\left(\frac{1}{2}x' + \frac{\sqrt{3}}{2}y'\right)\right) + \left(\frac{1}{2}x' + \frac{\sqrt{3}}{2}y'\right)^{2}$$

$$+ 2\left(\frac{\sqrt{3}}{2}x' - \frac{1}{2}y'\right) - 2\sqrt{3}\left(\frac{1}{2}x' + \frac{\sqrt{3}}{2}y'\right) = 0$$

$$3\left(\frac{3}{4}(x')^{2} - \frac{\sqrt{3}}{2}x'y' + \frac{1}{4}(y')^{2}\right) + 2\sqrt{3}\left(\frac{\sqrt{3}}{4}(x')^{2} + \frac{3}{4}x'y' - \frac{1}{4}x'y' - \frac{\sqrt{3}}{4}(y')^{2}\right)$$

$$+ \left(\frac{1}{4}(x')^{2} + \frac{\sqrt{3}}{2}x'y' + \frac{3}{4}(y')^{2}\right) + \left(\sqrt{3}x' - y'\right) - \left(\sqrt{3}x' - 3y'\right) = 0$$

$$\frac{9}{4}(x')^{2} - \frac{3\sqrt{3}}{2}x'y' + \frac{3}{4}(y')^{2} + \frac{3}{2}(x')^{2} + \frac{3\sqrt{3}}{2}x'y' - \frac{\sqrt{3}}{2}x'y' - \frac{3}{2}(y')^{2} + \frac{1}{4}(x')^{2} + \frac{\sqrt{3}}{2}x'y' + \frac{3}{4}(y')^{2} + \sqrt{3}x' - y' - \sqrt{3}x' - 3y' = 0$$

$$4(x')^{2} - 4y' = 0$$

$$y' = (x')^{2}$$

 $y'=(x')^2$

This is a vertical parabola. Graph it by drawing the rotated axes and plotting points.

• Classify the graph, use the quadratic formula to solve for y, and use a graphing utility to graph the equation.

$$3x^2 - 6xy + 3y^2 + 2y = 0$$

•

Classify the graph using the discriminant.

$$B^2 - 4AC = (-6)2 - 4(3)(3) = 0$$
, so it is a parabola.

To solve for y, rearrange terms in powers of y and factor.

$$3y^{2} + (2y - 6xy) + 3x^{2} = 0$$

$$3y^{2} + (2 - 6x)y + 3x^{2} = 0$$

Now fill in the quadratic formula: $y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

ic formula:
$$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$y = \frac{-(2 - 6x) \pm \sqrt{(2 - 6x)^2 - 4(3)(3x^2)}}{2(3)}$$
You will have to input two equations, one with

Because of the \pm sign, you will have to input two equations, one with \pm and one with \pm , to make the graph.

In this section, you will:

- Graph parametric equations.
- Write parametric equations.
 - Eliminate the parameter.

- Parametric Equations
 - Separate equations for *x* and *y*
 - *x* and *y* are functions of a third variable called a parameter
- Graph $\begin{cases} x = t 3 \\ y = t^2 + 1 \end{cases}$
 - Make a table

t	X	у	
-2	-5	5	
-1	-4	2	
0	-3	1	
1	-2	2	
2	-1	5	
3	0	10	

• Graph
$$\begin{cases} x = 2\cos\theta \\ y = 2\sin\theta \end{cases}$$
 for $0 \le \theta \le 2\pi$

t	x	y	
0	2	0	
$\pi/4$	$\sqrt{2}$	$\sqrt{2}$	
$\pi/2$	0	2	
$3\pi/4$	$-\sqrt{2}$	$\sqrt{2}$	
π	-2	0	
$5\pi/4$	$-\sqrt{2}$	$-\sqrt{2}$	
$3\pi/2$	0	-2	
$7\pi/4$	$\sqrt{2}$	$-\sqrt{2}$	

- Eliminating the Parameter
 - Solve one equation for parameter
 - Substitute it into the other equation
- Eliminate the parameter of $\begin{cases} x = \frac{1}{\sqrt{t}} \\ y = 2t^2 \end{cases}$

Solve one eq for t

$$x = \frac{1}{\sqrt{t}}$$
$$x\sqrt{t} = 1$$
$$t = \frac{1}{x^2}$$

Substitute into the other

$$y = 2(t^{2})$$
$$y = 2\left(\frac{1}{x^{2}}\right)^{2}$$
$$y = \frac{2}{x^{4}}$$

• Eliminate the parameter in $\begin{cases} x = 2\cos\theta \\ y = 2\sin\theta \end{cases}$

Direct substitution is difficult so use identities Remember $\sin^2\theta + \cos^2\theta = 1$

Square both equations

$$x^2 = 4\cos^2\theta$$
$$y^2 = 4\sin^2\theta$$

Add the new equations

$$x^{2} + y^{2} = 4\cos^{2}\theta + 4\sin^{2}\theta$$
$$x^{2} + y^{2} = 4(\cos^{2}\theta + \sin^{2}\theta)$$
$$x^{2} + y^{2} = 4$$

- Finding parametric equations
 - Choose something convenient to equal *t*
- Find parametric equations for y = 4x 3

Simple choice
$$(x = t)$$

$$\begin{cases} x = t \\ y = 4t - 3 \end{cases}$$
 Or more interesting $(t = 4x)$
$$\begin{cases} x = \frac{t}{4} \end{cases}$$

- Find parametric equations for conics.
- Parabola
- Horizontal: $\begin{cases} x = pt^2 + h \\ y = 2pt + k \end{cases}$
- Vertical: $\begin{cases} x = 2pt + h \\ y = pt^2 + k \end{cases}$

- Ellipse
- Horizontal: $\begin{cases} x = h + a \cos t \\ y = k + b \sin t \end{cases}$
- Vertical: $\begin{cases} x = h + b \sin t \\ y = k + a \cos t \end{cases}$
- Hyperbola
- Horizontal: $\begin{cases} x = h + a \sec t \\ y = k + b \tan t \end{cases}$
- Vertical: $\begin{cases} x = h + b \tan t \\ y = k + a \sec t \end{cases}$

In this section, you will:

- Graph polar coordinates
- Represent the same point multiple ways
- Convert between polar and rectangular coordinates

- Why use rectangular coordinates to graph circles?
- Use circles to graph circles
- Polar coordinates
 - (r, θ)
 - r = distance from pole
 - θ = angle counterclockwise from polar axis

- Graph
 - \bullet $A\left(4,\frac{\pi}{4}\right)$
 - $\bullet B\left(-5,\frac{2\pi}{3}\right)$
 - Negative *r* means go opposite
 - $C\left(3, -\frac{\pi}{6}\right)$
 - $^{\bullet} = \left(3, \frac{11\pi}{6}\right)$

- Multiple ways to represent same point
 - $^{\bullet}\left(r,\theta\right) =\left(r,\theta\pm2\pi n\right)$
 - Add full circles

- $^{\bullet}\left(r,\theta\right) =\left(-r,\theta\pm(2n+1)\pi\right)$
 - Opposite side of circle and add ½ circle

• Find 2 other ways to write $\left(3, \frac{\pi}{4}\right)$.

Add a circle

$$\left(3, \frac{\pi}{4} + 2\pi\right)$$
$$\left(3, \frac{9\pi}{4}\right)$$

Move to opposite side and add ½ circle

$$\left(-3, \frac{\pi}{4} + \pi\right)$$

$$\left(-3, \frac{5\pi}{4}\right)$$

- Convert between polar and rectangular
 - Polar → Rectangular
 - $x = r \cos \theta$
 - $y = r \sin \theta$
 - Rectangular → Polar
 - $\bullet \ r = \sqrt{x^2 + y^2}$
 - $\tan \theta = \frac{y}{x}$

- Convert $\left(4, \frac{\pi}{6}\right)$ to rectangular
- ullet Convert (-1,0) to polar

$$x = r \cos \theta$$

$$x = 4 \cos \frac{\pi}{6}$$

$$x = 4 \left(\frac{\sqrt{3}}{2}\right) = 2\sqrt{3}$$

$$y = r \sin \theta$$

$$y = 4 \sin \frac{\pi}{6}$$

$$y = 4 \left(\frac{1}{2}\right) = 2$$

$$(2\sqrt{3}, 2)$$

$$r = \sqrt{(-1)^2 + (0)^2}$$

$$r = 1$$

$$\tan \theta = \frac{y}{x}$$

$$\tan \theta = \frac{0}{-1}$$

 $\theta = \pi$ $(1, \pi)$

- Convert Equations
 - Convert r=1

• Convert $\theta = \frac{\pi}{4}$

Substitute
$$r=\sqrt{x^2+y^2}$$

$$\sqrt{x^2+y^2}=1$$

$$x^2+y^2=1$$

Circle with r=1

Use
$$\tan \theta = \frac{y}{x}$$

$$\tan \theta = \tan \frac{\pi}{4}$$

$$\frac{y}{x} = 1$$

$$y = x$$

Line

• Convert
$$r = \csc \theta$$

Rewrite
$$r = \frac{1}{\sin \theta}$$

$$r \sin \theta = 1$$

Use
$$y = r \sin \theta$$

$$y = 1$$

Horizontal line

7-08 GRAPHS OF POLAR EQUATIONS

In this section, you will:

- Graph polar equations
- Identify symmetry in polar equations
- Find maximums and zeros of polar equations

7-08 GRAPHS OF POLAR EQUATIONS

- To graph polar equations using a table
 - ullet Pick heta and calculate r
- Graph $r = 3\cos\theta$

r	3	2.9	2.6	2.1	1.5	0.8	0
$\boldsymbol{\theta}$	0	$\pi/12$	π/6	$\pi/4$	$\pi/3$	$5\pi/12$	$\pi/2$
r	-0.8	-1.5	-2.1	-2.6	-2.9	-3	
θ	$7\pi/12$	$2\pi/3$	$3\pi/4$	$5\pi/6$	$11\pi/12$	π	·

- Symmetry Tests (make the replacement and to simplify to original equation)
 - Line $\theta = \frac{\pi}{2}$
 - Replace (r, θ) with $(r, \pi \theta)$ or $(-r, -\theta)$
 - Polar Axis
 - Replace (r, θ) with $(r, -\theta)$ or $(-r, \pi \theta)$
 - Pole
 - Replace (r, θ) with $(r, \pi + \theta)$ or $(-r, \theta)$
- Quick tests
 - If it is a function of $\cos \theta$, then polar axis symmetry
 - If it is a function of $\sin \theta$, then line $\theta = \frac{\pi}{2}$ symmetry

- Find the symmetry of $\theta = \frac{\pi}{4}$
- Line $\theta = \frac{\pi}{2}$:
 - Replace (r, θ) with $(-r, -\theta)$
- Polar axis
 - Replace (r, θ) with $(r, -\theta)$
- Pole
 - Replace (r, θ) with $(-r, \theta)$

$$-\theta = \frac{\pi}{4}$$

$$\theta = -\frac{\pi}{4}$$

This is different-no $\theta = \frac{\pi}{2}$ symmetry

$$-\theta = \frac{\pi}{4}$$
$$\theta = -\frac{\pi}{4}$$

No for polar axis symmetry

$$\theta = \frac{\pi}{4}$$

Same, YES for pole symmetry

• Find the symmetry of $r = 2(1 - \sin \theta)$

This is a function of $\sin\theta$, so quick test says $\operatorname{Line}\theta = \frac{\pi}{2}\operatorname{symmetry}$

- Maximums and Zeros of Polar Equations
- Maximums occurs when |r| is largest.
 - Find angles where the trigonometric function is at its maximum.
- Zeros occur when r = 0.
 - Find angles where the trigonometric function is 0.

• Find the zeros and maximum r values of $r = 5 \cos 2\theta$

Zeros

$$0 = 5\cos 2\theta$$

$$0 = \cos 2\theta$$

$$2\theta = \frac{\pi}{2} + n\pi$$

$$\theta = \frac{\pi}{4} + \frac{n\pi}{2}$$

$$\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

Maximums

Cos is x on unit circle, so max is when $2\theta=0+n\pi$

$$\theta = 0 + \frac{n\pi}{2}$$

$$\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$$

In this section, you will:

- Identify the type of a conic from its polar equation
 - Find the polar equation of a conic

- Alternative Definition of a Conic Section
- Locus of a point in the plane that moves so its distance from a fixed point (focus) is in a constant ratio to its distance from a fixed line (directrix).
- The ratio is the eccentricity (*e*).
 - e < 1 ellipse
 - e = 1 parabola
 - e > 1 hyperbola

e < 1 Ellipse

e = 1 Parabola

e > 1 Hyperbola

p =distance from focus to directrix

One focus is (0,0)

The conic bends around the focus and away from directrix

- Vertical Directrix
 - Right of pole

$$^{\bullet} r = \frac{ep}{1 + e \cos \theta}$$

$$^{\bullet} r = \frac{ep}{1 - e \cos \theta}$$

- ullet Horizontal Directrix
 - Above pole

$$^{\bullet} r = \frac{ep}{1 + e \sin \theta}$$

$$r = \frac{ep}{1 - e \sin \theta}$$

• Identify the type of conic $r = \frac{2}{2 + \cos \theta}$

Want it in the form $r=\frac{ep}{1+e\cos\theta}$, so multiply top and bottom by ½ to get the 1

$$r = \frac{\frac{1}{2}(2)}{\frac{1}{2}(2 + \cos \theta)}$$
$$r = \frac{1}{1 + \frac{1}{2}\cos \theta}$$

This is vertical directrix to right of pole

$$e = \frac{1}{2} < 1$$
 so Ellipse

• Identify type of conic and graph

$$r = \frac{3}{2 - 4\sin\theta}$$

Want a 1 at beginning of denominator, so multiply top and bottom by ½
$$r=\frac{\frac{1}{2}(3)}{\frac{1}{2}(2-4\sin\theta)}$$

$$r=\frac{\frac{3}{2}}{1-2\sin\theta}$$

This is like
$$r = \frac{ep}{1 - e \sin \theta}$$

Horizontal directrix below pole

e=2>1 Hyperbola

$$ep = \frac{3}{2}$$

$$2p = \frac{3}{2} \rightarrow p = \frac{3}{4}$$

Graph with a table

• Find the polar equation of the parabola whose focus is the pole and directrix is the line x = -2.

Graph the directrix and count to find p

$$p = 2$$

Parabola so e = 1

Vertical directrix to left of pole

$$r = \frac{ep}{1 - e\cos\theta}$$
$$r = \frac{2(1)}{1 - (1)\cos\theta}$$
$$r = \frac{2}{1 - \cos\theta}$$

• Find the polar equation of the hyperbola with focus at pole and vertices $\left(1, \frac{3\pi}{2}\right)$ and $\left(-9, \frac{\pi}{2}\right)$.

Continued on next slide

Graph the vertices.

The center is midpoint between vertices

a = center to vertex = 4

c = center to focus = 5

$$e = \frac{c}{a} = \frac{5}{4}$$

Horizontal directrix below pole

$$r = \frac{ep}{1 - e\sin\theta}$$
$$r = \frac{\frac{5}{4}p}{1 - \frac{5}{4}\sin\theta}$$

Multiply top and bottom by 4 to remove fractions

$$r = \frac{5p}{4 - 5\sin\theta}$$

• Plug in a point $\left(1, \frac{3\pi}{2}\right)$ to find p

Write final equation

$$r = \frac{5p}{4 - 5\sin\theta}$$

$$1 = \frac{5p}{4 - 5\sin\frac{3\pi}{2}}$$

$$1 = \frac{5p}{4 - 5(-1)}$$

$$1 = \frac{5p}{9}$$

$$9 = 5p$$

$$r = \frac{5p}{4 - 5\sin\theta}$$

$$r = \frac{5p}{4 - 5\sin\theta}$$